If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+128x-224=0
a = 4; b = 128; c = -224;
Δ = b2-4ac
Δ = 1282-4·4·(-224)
Δ = 19968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19968}=\sqrt{256*78}=\sqrt{256}*\sqrt{78}=16\sqrt{78}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(128)-16\sqrt{78}}{2*4}=\frac{-128-16\sqrt{78}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(128)+16\sqrt{78}}{2*4}=\frac{-128+16\sqrt{78}}{8} $
| -0.25w+7-0.75w=-2 | | 52x-21=3x+7(7x+3) | | 10m-2/5=9.03/5 | | -16x^2+320x+25600=0 | | 4y2+8y-6=0 | | 1/42(x−14)=4 | | 6(8-3x)-(2x+2x+1)=107 | | 56+(6x+4)=180 | | 4/5=x+5/9 | | 16-5(3t-4)=8(-2t=11) | | 15-6x=7x+53 | | 5=v29 | | 3x+2(1-3(x-2))=2x | | 4y=38-0.5(4y+16) | | 5=v=29 | | 2x-x/3=24 | | 3x2+5x=2 | | L(p)=3p2+25-140 | | 3(3+x)=5(2x+7) | | 30-x/5=-12 | | 2(2n+2)=6(6n+1)+2 | | 4n−18=52 | | .75=(a-51)/51 | | k=+1=-27 | | 5m=(5/6)*(6m-10) | | 4-2x(7-2)=-96 | | -1=-x/3 | | 3x+7(x+5)=5x+38 | | (3x6)-5=13+(2x5) | | -18=5-(6k-19) | | 23+5w=-12 | | 2y/21-9=7-3y/7 |